Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38539901

ABSTRACT

The study aimed to optimize hydrolysis conditions and isolate and identify bioactive peptides with anti-skin aging effects from Acheta domesticus (house cricket). A. domesticus proteins underwent hydrolysis using Alcalase® and optimized conditions using response surface methodology through a face-centered central composite design. Variable controls (enzyme-substrate concentration (E/S), time, and temperature) were assessed for their impact on activities against collagenase, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and degree of hydrolysis of protein hydrolysate (PH). PH was also investigated for composition, anti-skin aging, and anti-inflammatory effects. Amino acid sequences with potent anti-skin aging activity were isolated and identified using ultrafiltration, gel filtration chromatography, and liquid chromatography coupled with tandem mass spectrometry, employing de novo sequencing. Optimal conditions for producing PH with maximum anti-skin aging activity were an E/S concentration of 2.1% (w/w), 227 min, and 61.5 °C. Glutamic acid was a predominant amino acid and PH exhibited a molecular weight below 15 kDa. Additionally, PH displayed significant activities against collagenase, hyaluronidase, DPPH●, lipid peroxidation, and NF-κB-mediated inflammation (p < 0.05). Three novel anti-skin aging peptides were identified-Ala-Val-Thr-Lys-Ala-Asp-Pro-Tyr-Thr-Asp-Gln, Thr-Val-Met-Glu-Leu-Asn-Asp-Leu-Val-Lys-Ala-Phe, and Val-Pro-Leu-Leu-Glu-Pro-Trp-exhibiting the most potent collagenase and DPPH● inhibition. Therefore, this study proposed that PH, produced with Alcalase® under optimal conditions, emerges as a promising substance with potent anti-skin aging activity for the cosmeceutical industry.

2.
Polymers (Basel) ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337307

ABSTRACT

Gelatin methacryloyl (GelMA) is an ideal bioink that is commonly used in bioprinting. GelMA is primarily acquired from mammalian sources; however, the required amount makes the market price extremely high. Since garbage overflow is currently a global issue, we hypothesized that fish scales left over from the seafood industry could be used to synthesize GelMA. Clinically, the utilization of fish products is more advantageous than those derived from mammals as they lower the possibility of disease transmission from mammals to humans and are permissible for practitioners of all major religions. In this study, we used gelatin extracted from fish scales and conventional GelMA synthesis methods to synthesize GelMA, then tested it at different concentrations in order to evaluated and compared the mechanical properties and cell responses. The fish scale GelMA had a printing accuracy of 97%, a swelling ratio of 482%, and a compressive strength of about 85 kPa at a 10% w/v GelMA concentration. Keratinocyte cells (HaCaT cells) were bioprinted with the GelMA bioink to assess cell viability and proliferation. After 72 h of culture, the number of cells increased by almost three-fold compared to 24 h, as indicated by many fluorescent cell nuclei. Based on this finding, it is possible to use fish scale GelMA bioink as a scaffold to support and enhance cell viability and proliferation. Therefore, we conclude that fish scale-based GelMA has the potential to be used as an alternative biomaterial for a wide range of biomedical applications.

3.
Mar Drugs ; 21(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37999383

ABSTRACT

Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1ß, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.


Subject(s)
Macrophages , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/therapeutic use , Polysaccharides/chemistry , Inflammation/metabolism , RAW 264.7 Cells
4.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298441

ABSTRACT

The sea cucumber body wall was subjected to enzymatic hydrolysis using papain. The relationship between the enzyme concentration (1-5% w/w protein weight) and hydrolysis time (60-360 min) and the degree of hydrolysis (DH), yield, antioxidant activities, and antiproliferative activity in a HepG2 liver cancer cell line was determined. The surface response methodology showed that the optimum conditions for the enzymatic hydrolysis of sea cucumber were a hydrolysis time of 360 min and 4.3% papain. Under these conditions, a 12.1% yield, 74.52% DH, 89.74% DPPH scavenging activity, 74.92% ABTS scavenging activity, 39.42% H2O2 scavenging activity, 88.71% hydroxyl radical scavenging activity, and 9.89% HepG2 liver cancer cell viability were obtained. The hydrolysate was produced under optimum conditions and characterized in terms of its antiproliferative effect on the HepG2 liver cancer cell line.


Subject(s)
Holothuria , Liver Neoplasms , Sea Cucumbers , Animals , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Hydrolysis , Sea Cucumbers/chemistry , Papain , Hydrogen Peroxide , Liver Neoplasms/drug therapy , Cell Line , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769139

ABSTRACT

The optimum condition of acid hydrolysis for hydroxyapatite extraction from bigeye snapper (Priancanthus tayenus) bone and the effects of extraction time (10-60 min) and HCl concentration (2.0-5.0% w/v) on yield and hydroxyapatite properties were determined. The optimum extracted condition was found using 5% HCl for 60 min, which was 13.4% yield; 19.8 g/100 g Ca content; 9.6 g/100 g P content; 2.1 Ca/P ratio; L*, a*, b*; and ΔE as 84.5, 2.8, 16.5, and 15.6, respectively. The using of 5% NaOH solution was optimum for hydroxyapatite precipitation from the extracted solution. The characteristic and biological properties of the obtained hydroxyapatite were studied. Fourier transform infrared spectroscopy and X-ray diffraction results showed a good comparison between the extracted and commercial hydroxyapatite. The microstructure of the extracted hydroxyapatite from a scanning electron microscope showed an irregular and flat-plate shape, large surface area, and roughness. The extracted hydroxyapatite was non- and low-cytotoxicity at a concentration of 50 and 100-400 µg/mL, respectively. Bovine serum albumin (BSA) adsorption and desorption of hydroxyapatite was studied. An increasing BSA concentration, hydroxyapatite amount, and adsorption time significantly increased protein adsorption on hydroxyapatite. Protein desorption from BSA-loaded hydroxyapatite showed an increase of release initially in the first 4 days and became a steady release rate until 14 days.


Subject(s)
Durapatite , Perciformes , Animals , Durapatite/pharmacology , Durapatite/chemistry , Serum Albumin, Bovine/chemistry , Perciformes/metabolism , Spectroscopy, Fourier Transform Infrared , Adsorption , X-Ray Diffraction , Surface Properties
6.
Polymers (Basel) ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36501723

ABSTRACT

The tail tendons of skipjack tuna (Katsuwonus pelamis), a by-product from the meat-separation process in canned-tuna production, was used as an alternative source of collagen extraction. The acid-solubilized collagens using vinegar (VTC) and acetic-acid (ATC) extraction and pepsin-solubilized collagen (APTC) were extracted from tuna-tail tendon. The physiochemical properties and characteristics of those collagens were investigated. The obtained yield of VTC, ATC, and APTC were 7.88 ± 0.41, 8.67 ± 0.35, and 12.04 ± 0.07%, respectively. The determination of protein-collagen solubility, the effect of pH and NaCl on collagen solubility, Fourier-transform infrared spectroscopy (FTIR) spectrum, and microstructure of the collagen-fibril surface using a scanning electron microscope (SEM) were done. The protein solubility of VTC, ATC, and APTC were 0.44 ± 0.03, 0.52 ± 0.07, and 0.67 ± 0.12 mg protein/mg collagen. The solubility of collagen decreased with increasing of NaCl content. These three collagens were good solubility at low pH with the highest solubility at pH 5. The FTIR spectrum showed absorbance of Amide A, Amide B, Amide I, Amide II, and Amide III groups as 3286-3293 cm-1, 2853-2922 cm-1, 1634-1646 cm-1, 1543-1544 cm-1, and 1236-1237 cm-1, respectively. The SEM analysis indicated a microstructure of collagen surface as folding of fibril with small pore.

7.
Polymers (Basel) ; 14(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36235935

ABSTRACT

Mantis shrimp (Oratosquilla nepa) exoskeleton, a leftover generated after processing, was used as a starting material for chitosan (CS) production. CS was extracted with different deacetylation times (2, 3 and 4 h), termed CS−2, CS−3 and CS−4, respectively, and their characteristics and antimicrobial and film properties with agarose (AG) were investigated. Prolonged deacetylation time increased the degree of deacetylation (DDA: 73.56 ± 0.09−75.56 ± 0.09%), while extraction yield (15.79 ± 0.19−14.13 ± 0.09%), intrinsic viscosity (η: 3.58 ± 0.09−2.97 ± 0.16 dL/g) and average molecular weight (Mν: 1.4 ± 0.05−1.12 ± 0.08 (×106 Da)) decreased (p < 0.05). FTIR spectra of extracted CS were similar to that of commercial CS. Among all the CS samples prepared, CS−3 had the best yield, DDA, Mν and antimicrobial activity. Therefore, it was chosen for the development of composite films with AG at different ratios (CS−3/AG; 100/0, 75/25, 50/50, 25/75 and 0/100). As the proportion of AG increased, the tensile strength (29.96 ± 1.80−89.70 ± 5.08 MPa) of the composite films increased, while thickness (0.056 ± 0.012−0.024 ± 0.001 mm), elongation at break (36.52 ± 1.12−25.32 ± 1.23%) and water vapor permeability (3.56 ± 0.10−1.55 ± 0.02 (×10−7 g m m−2 s−1 Pa−1)) decreased (p < 0.05). Moreover, lightness of the films increased and yellowness decreased. CS−3/AG (50/50) composite film exhibited high mechanical and barrier properties and excellent compatibility according to FTIR and SEM analyses. According to these finding, mantis shrimp exoskeleton could be used to produce CS. The developed bio-composite film based on an appropriate ratio (50/50) of CS−3 and AG has potential for being used as food packaging material.

8.
Food Chem ; 395: 133594, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35792487

ABSTRACT

This study investigated the effects of different saccharides (inulin and fructooligosaccharides (FOS)), pH (8-10) and thermal treatment time (6-24 h) at 70 °C on the structural, functional properties and antioxidant activities of conjugated cricket protein (CCPs) by wet heating Maillard reaction (MR). Results suggested that the browning intensity, color development and degree of glycation were significantly increased (p < 0.05) under increasing thermal treatment with FOS. SDS-PAGE and FTIR confirmed the formation of a higher molecular weight of CCPs. Water solubility, oil holding capacity, emulsifying properties, and antioxidant properties of CCPs were all superior to the unconjugated products. However, the over-conditioning (treatment time > 6 h, pH > 9) in MR could contribute to a significant decrease (p < 0.05) of CCPs functional properties. The results suggested that the conjugation of cricket protein isolate (CPI) with MR is the most promising way to improve cricket protein properties for food industry applications.


Subject(s)
Gryllidae , Maillard Reaction , Animals , Antioxidants/chemistry , Carbohydrates , Emulsions/chemistry , Polymerization
9.
Food Chem X ; 15: 100365, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35761881

ABSTRACT

We developed a new healthy gummy jelly from tilapia skin-derived gelatine and four rice cultivar powders. The gelatine from the tilapia fish skin was obtained using acid and alkaline extraction. The extracted gelatine comprised 96.77 ± 0.96 % protein and featured a breaking force of 5.21 ± 0.58 g, which indicates high gel strength. The fish gelatine was combined with the rice varieties to produce a gummy jelly with an enhanced nutritional value, and its flavor profile was determined. Gummy jelly products with added black sticky rice powder exhibited the highest protein and carbohydrate contents. The gummy jelly supplemented with rice berry had the highest score, with 90 % acceptance, on a nine-point hedonic scale. Microbiological analysis showed that no microorganisms were detected in any of the samples. These results indicate that fish gelatine and rice powder may be used as nutritive ingredients in sports food to improve athletic performances.

10.
Foods ; 11(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35206090

ABSTRACT

The optimization of antioxidant and anti-tyrosinase activity during jellyfish hydrolysate preparation was studied using a response surface methodology (RSM) with a face-centered composite design. The influence of the hydrolysis duration and the enzyme concentration on the IC50 of the DPPH and ABTS radical scavenging activity, ferric-reducing antioxidant power (FRAP), the degree of hydrolysis (DH), yield, and the IC50 value of tyrosinase inhibitory activity were determined. The optimum conditions for the production of jellyfish hydrolysate using alcalase (JFAH), flavourzyme (JFFH), or papain (JFPH) were achieved at hydrolysis times of 360, 345, or 360 min, respectively, and at an enzyme concentration of 5.0%. JFFH had the highest antioxidant and tyrosinase inhibitory activity. JFAH, JFFH, and JFPH concentrations of 2.5 mg/mL resulted in HaCaT cells (IC80) having a survival rate of 80%. The amino acid profile of JFFH contained about 43% hydrophobic and 57% hydrophilic amino acids, comprising Gly, Cys, Glx, Asx, which were dominant. The isolation of a peptide fraction from JFFH was carried out using ultrafiltration membranes (10, 3, and 1 kDa) and gel filtration chromatography. Fraction-III (1-3 kDa) showed the highest antioxidative and tyrosinase inhibitory activity.

11.
Poult Sci ; 101(1): 101509, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34788715

ABSTRACT

A blend of cassava starch (CS), carboxymethyl cellulose (CMC), and paraffin was prepared as a coating material to maintain the quality of eggs during 4 wk of storage at different temperatures. The efficacy of the CS/CMC/paraffin (6/1/0.5% w/v) coating was investigated in terms of the Haugh unit (HU), weight loss, pH, and microbial load at the end of storage. The best egg storage temperature was 4°C, which maintained an HU of grade AA in coated and uncoated eggs for 4 wk. Lower weight loss (2.14%) was observed in coated eggs at 4°C storage than at 30°C storage (3.26%). The pH in the albumen of coated and uncoated eggs at 4°C increased from 6.84 to 6.88 and 7.01 to 7.03, respectively, after 4 wk of storage. No microbes were detected in the coated and uncoated eggs at 4°C. The maximum microbial count was 728 ± 35 cfu/mL in uncoated eggs at 30°C storage. Egg coating prevented microbial contamination of eggs stored at 30°C for 4 wk. The freshness of the eggs did not affect the nutrient content. The egg-coating material effectively maintained egg quality, prevented microbial contamination of eggs, and increased the shelf life of eggs at storage temperatures of 25 and 30°C.


Subject(s)
Manihot , Paraffin , Animals , Carboxymethylcellulose Sodium , Chickens , Starch , Temperature
12.
Int J Biol Macromol ; 197: 49-54, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34921892

ABSTRACT

Thermoplastic starch (TPS) was prepared from cassava starch blended with glycerol (70:30 w/w). Gelatin (Gel) was incorporated into the TPS in water. The TPS/Gel was melt-blended with polyethylene-grafted-maleic anhydride (PEMAH). Maximum tensile strength of the TPS/PEMAH/Gel10 (29.3 MPa) increased significantly compared to the TPS/PEMAH blend (6.3 MPa), while elongation at break was 70%. The morphology of the TPS/PEMAH showed co-continuous morphology, while phase inversion occurred with the addition of Gel. The Gel was dispersed in the TPS matrix and covered the PEMAH. The TPS/PEMAH/Gel was nanoparticles (200 nm) in the TPS matrix. It showed two melting temperatures for PEMAH due to two structures with different crystal sizes. Melt viscosity of the TPS/PEMAH was enhanced with increasing Gel as the reaction induced chain extension. FTIR and rheology measurements confirmed the reaction between -NH groups of Gel and MAH groups of PEMAH. This reaction improved interfacial adhesion, morphology, and the mechanical properties of the blends.


Subject(s)
Maleic Anhydrides
13.
Front Nutr ; 8: 772033, 2021.
Article in English | MEDLINE | ID: mdl-34805253

ABSTRACT

Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are well-known to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection.

14.
Polymers (Basel) ; 13(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34771344

ABSTRACT

An egg-coating material was developed to extend the shelf-life and freshness of eggs by blending cassava starch (CS) with gelling agents and waxes. The effects of the properties of this egg coating on egg quality were investigated. Hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), beeswax, and paraffin wax were used. CS blended with low-molecular-weight paraffin (Paraffin(L)) and CMC coating material displayed a tensile strength of 4 MPa, 34% elongation at break, 0.0039 g day-1 m-2 water vapor permeability, and a water contact angle of 89° at 3 min. Eggs coated with CS/CMC/Paraffin(L) solutions had a Haugh unit value of 72 (AA grade) and exhibited a weight loss of 2.4% in 4 weeks. CMC improved the compatibility of CS and Paraffin(L). This improvement and the hydrophobicity of Paraffin(L) provided suitable mechanical and water-resistance properties to the coating material that helped to maintain the quality of the coated AA-grade eggs with low weight loss for 4 weeks.

15.
J Fungi (Basel) ; 7(10)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34682268

ABSTRACT

In this study, the mucilage polysaccharide (MP) from Amanita hemibapha subspecies javanica was prepared by hot water extraction and ethanol precipitation and then fractionated using anion-exchange chromatography equipped with a DEAE Sepharose fast flow column. The most immune-enhancing polysaccharide fraction 2 (MPF2) was subjected to a structural modification such as hydrolysis or over-sulphation. The sulphate and molecular weight (Mw) of over-sulphated (OS1-3) and hydrolysed (HS1-3) derivatives of MPF2 differed between 9.85% and 14.2% and 32.8 and 88.1 × 103 g/mol, respectively. Further, the immune-enhancing properties of MPF2 and its derivatives were tested on RAW264.7 and NK cells through various in vitro assays. Interestingly, a low molecular weight of HS1-3 significantly increased the nitric oxide (NO) production (p < 0.05) more than MPF2, indicating that Mw is a major factor in RAW264.7 cell stimulation. In addition, RAW264.7 cells produced various cytokines by up-regulating mRNA expression levels and the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. On the other hand, OS1-3-treated natural killer (NK) cells induced cytotoxicity in HepG2 cells through the expression of IFN-γ, Grandzyme-B, perforin, NKp30, and FasL. These results demonstrated that sulphate derivatives play an important role in NK cell activation. Further, this study also explores how polysaccharide binds to RAW264.7 and NK cells. MPF2 and HS3 may activate RAW264.7 cells via binding to TLR4 receptors, and OS2 could be activated through the CR3 signalling pathways.

16.
J Fungi (Basel) ; 7(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34575721

ABSTRACT

This research aimed to extract mucilage polysaccharides (MP) from Amanita hemibapha subspecies javanica (Corner and Bas), and further fractionate them using anion-exchange chromatography, yielding two fractions (MPF1 and MPF2). The crude extract, and fractions mainly consisted of carbohydrates (83.5-93.2%) with minor amounts of proteins (5.40-7.20%), and sulphates (1.40-9.30%). Determination of the monosaccharide composition revealed that glucose was the major unit, followed by galactose, mannose, rhamnose, and arabinose. The average molecular weight (MW) of the crude extract and fractions was in the range 104.0-479.4 × 103 g/mol. Interestingly, the crude extract, and fractions did not cause any toxic effect in RAW264.7 cells. However, they stimulated the RAW264.7 cells to release nitric oxide and cytokines through the activation of nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways via cell surface TLR4. Structural analysis of the most immunestimulating extract fraction, MPF2, revealed that the main backbone consisted of α-D-(1→6)-glucopyranoside. These results suggest that the MPs derived from A. hemibapha subspecies javanica (Corner and Bas) are potent in enhancing immunity; hence, they can be used as a functional ingredient in food products.

17.
Int J Biol Macromol ; 188: 283-289, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34343586

ABSTRACT

Oil resistant thermoplastic elastomers (TPE) were prepared using mung bean thermoplastic starch (MTPS) blending with rubbers and sericin. Sericin was incorporated into MTPS as a compatibilizer. MTPS with sericin (MTPSS) was blended with natural rubber (NR) and epoxidized NR (ENR). Sericin at 5% improved the tensile strength (10 MPa), elastic recovery (52%) and morphology of the MTPSS/ENR blend. The mechanical properties, elastic recovery and morphology of the MTPSS5/NR blend were improved by the addition of ENR. The MTPSS/ENR showed palm (28%) and motor oils (8%) swelling resistance because of the hydrophilicity of MTPS and high polarity of ENR. The MTPSS/ENR/NR showed gasoline swelling resistance (104%) because of the hydrophilicity of MTPS and low polarity of NR. FTIR confirmed a reaction between the -NH groups of sericin and the epoxy groups of ENR. This reaction improved the compatibility, mechanical properties, elastic recovery, morphology and oils swelling resistance of the blends.


Subject(s)
Elastomers/chemistry , Oils/adverse effects , Plastics/chemistry , Biochemical Phenomena , Epoxy Compounds/chemistry , Oils/chemistry , Rubber/chemistry , Starch/chemistry , Temperature , Tensile Strength/drug effects
18.
Sci Rep ; 11(1): 11813, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083711

ABSTRACT

The (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min-1). A parameter search strategy aimed at minimizing overall residual sum of square (RSST) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (ka) of (9.38 ± < 0.01) × 10-6% relative PDC activity min-1 mM-1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSST, mean sum of square error (MSE), and coefficient of determination (R2) values of 662, 17.4, and 0.9863, respectively.

19.
Sci Rep ; 10(1): 10410, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591579

ABSTRACT

Purple glutinous rice bran (Kum Doi Saket rice (KUM)) contains high content of edible polysaccharides and anthocyanins and has an excellent antioxidant activity. This research aimed to optimize the extraction of crude polysaccharides from defatted purple glutinous rice bran using an ultrasonic-assisted extraction (UAE) and compared with a hot water extraction (HWE). Results showed that optimal extraction condition was as follows: a defatted rice bran to water ratio of 1:20 w/v, extraction temperature and time of 70 °C for 20 min. Under the optimal extraction condition, the yield of polysaccharide of UAE (4%) was significantly higher than that obtained from the HWE (0.8%). Additionally, antioxidant activities of extracted polysaccharide including IC50 value DPPH, IC50 value ABTS, and FRAP value were 1.09 mg/mL, 2.80 mg/mL and 197 µM Fe2+/g, respectively. It is suggested that the UAE process is promising method to decrease the processing time and to enhance extracted polysaccharide yields by 4 times.


Subject(s)
Antioxidants/chemistry , Oryza , Plant Extracts/chemistry , Polysaccharides/chemistry , Ultrasonics
20.
Prep Biochem Biotechnol ; 48(2): 194-201, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29355454

ABSTRACT

Prebiotic substances are extracted from various plant materials or enzymatic hydrolysis of different substrates. The production of fructo-oligosaccharide (FOS) and inulo-oligosaccharide (IOS) was performed by applying two substrates, sucrose and inulin; oligosaccharide yields were maximized using central composite design to evaluate the parameters influencing oligosaccharide production. Inulin from Jerusalem artichoke (5-15% w/v), sucrose (50-70% w/v), and inulinase from Aspergillus niger (2-7 U/g) were used as variable parameters for optimization. Based on our results, the application of sucrose and inulin as co-substrates for oligosaccharide production through inulinase hydrolysis and synthesis is viable in comparative to a method using a single substrate. Maximum yields (674.82 mg/g substrate) were obtained with 5.95% of inulin, 59.87% of sucrose, and 5.68 U/g of inulinase, with an incubation period of 9 hr. The use of sucrose and inulin as co-substrates in the reaction simultaneously produced FOS and IOS from sucrose and inulin. Total conversion yield was approximately 67%. Our results support the high value-added production of oligosaccharides using Jerusalem artichoke, which is generally used as a substrate in prebiotics and/or bioethanol production.


Subject(s)
Aspergillus niger/enzymology , Glycoside Hydrolases/metabolism , Helianthus/metabolism , Inulin/metabolism , Oligosaccharides/metabolism , Sucrose/metabolism , Aspergillus niger/metabolism , Hydrolysis , Industrial Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...